1.) (10 pts.) Given the quadratic form $8x_1^2 + 6x_1x_2$,

 a.) (2 pts.) find the symmetric matrix of the quadratic form;

 b.) (2 pts.) classify the quadratic form as positive definite, negative definite, or indefinite, and explain your reasoning;

 c.) (6 pts.) make a change of variable, $x = Py$, that transforms the quadratic form into one with no cross-product term.
2.) (15 pts.)

a.) (5 pts.) **True or False:** A least-squares solution of $Ax = b$ is a vector \hat{x} such that $\|b - Ax\| \leq \|b - A\hat{x}\|$ for all x in \mathbb{R}^n. If this is true, explain why. If it is false, correct the statement to make it true.

b.) (10 pts.) While boiling a pot of water, you take the temperature every two minutes. This generates the data points $(0, 15), (2, 37), (4, 68), (6, 89)$, where the first coordinate is time, in minutes, and the second coordinate is temperature, in degrees Celsius. Using linear algebra techniques, find the equation $y = \beta_0 + \beta_1 x$ of the least-squares line that best fits these data points.
3.) (15 pts.)

a.) (5 pts.) Is it true that \(\mathbf{u} \cdot \mathbf{v} - \mathbf{v} \cdot \mathbf{u} = 0 \) for every pair of vectors \(\mathbf{u} \) and \(\mathbf{v} \) in \(\mathbb{R}^n \)? If so, explain why; if not, explain why not.

b.) (5 pts.) Suppose both \(U \) and \(V \) are orthogonal matrices. Explain why \(UV \) is an orthogonal matrix. That is, explain why \(UV \) is invertible and why its inverse is \((UV)^T\).

c.) (5 pts.) The Orthogonal Decomposition Theorem gives a formula for computing \(\hat{y} \), the projection of a vector \(y \) onto a subspace \(W \) of \(\mathbb{R}^n \). Each term in that formula is itself a projection of \(y \) onto a subspace of \(W \). Explain why.
4.) (15 pts.)

a.) (5 pts.) Verify that \(\mathbf{v} = (2, 1, -1, 2) \) is an eigenvector of \(A \), given below. What is the corresponding eigenvalue of \(\mathbf{v} \)?

\[
A = \begin{bmatrix}
-6 & 4 & 0 & 9 \\
-3 & 0 & 1 & 6 \\
-1 & -2 & 1 & 0 \\
-4 & 4 & 0 & 7
\end{bmatrix}
\]

b.) (5 pts.) Construct a 4 \(\times \) 4 matrix with eigenvalues \(-3, 2, \) and 5 (with multiplicity 2). Your matrix should not be strictly diagonal - that is, there must be some nonzero entries in non-diagonal positions within the matrix.

c.) (5 pts.) Use the factorization \(A = PD P^{-1} \) to compute \(A^k \), where \(k \) represents an arbitrary positive integer.

\[
A = \begin{bmatrix}
33 & -20 \\
60 & -37
\end{bmatrix} = \begin{bmatrix}
2 & 1 \\
3 & 2
\end{bmatrix} \begin{bmatrix}
3 & 0 \\
0 & -7
\end{bmatrix} \begin{bmatrix}
2 & -1 \\
-3 & 2
\end{bmatrix} = PD P^{-1}
\]
5.) (15 pts.)

a.) (5 pts.) What are the three properties of a subspace H of \mathbb{R}^n?

b.) (5 pts.) The shaded region in the image below is a set in \mathbb{R}^2. (Include the bounding lines as part of the set.) Give a specific reason why this set is not a subspace of \mathbb{R}^2.

c.) (5 pts.) Let A be an $m \times n$ matrix. Explain why $\text{Nul} \ A$ is a subspace of \mathbb{R}^m.
6.) (15 pts.)

a.) (5 pts.) Must an elementary matrix be square? Why or why not?

b.) (5 pts.) Let T be the linear transformation $T(x_1, x_2, x_3) = (4x_2 - 6x_3, 0, 7x_2 - 9x_3, x_1)$. Find the matrix A for which $T(x) = Ax$.

c.) (5 pts.) Use the matrix inverse algorithm to compute A^{-1}, if it exists. If it does not exist, explain how the algorithm shows this.

$A = \begin{bmatrix} 1 & -2 & 1 \\ 4 & -7 & 3 \\ -2 & 6 & -4 \end{bmatrix}$
7.) (15 pts.)

a.) (5 pts.) Suppose the vectors below are linearly independent. What can you say about the numbers \(a, b, c, d, e, \) and \(f \)?

\[
\begin{bmatrix}
 a \\
 0 \\
\end{bmatrix}, \quad
\begin{bmatrix}
 b \\
 c \\
 0 \\
\end{bmatrix}, \quad
\begin{bmatrix}
 d \\
 e \\
 f \\
\end{bmatrix}
\]

b.) (5 pts.) Write the coefficient matrix of the system of equations below.

\[
\begin{align*}
3x_2 &- 6x_3 + 8x_4 = -5 \\
3x_1 &+ x_3 - 2x_4 = 7 \\
4x_1 &+ x_2 + 5x_3 = 8
\end{align*}
\]

c.) (5 pts.) Write the augmented matrix of the system of equations in part (b). Does the system have a solution? How do you know?