Read all of the following information before starting the exam:

- Put all of your work in the blue book EXCEPT for the last problem (do that on the test sheet). Turn in the blue book and test sheet.
- Show all work, clearly and in order, if you want to get full credit. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Circle or otherwise indicate your final answers.
- Please keep your written answers brief; be clear and to the point. I will take points off for rambling and for incorrect or irrelevant statements.
- This test has 10 problems and is worth 100 points, It is your responsibility to make sure that you have all of the pages!
- Good luck!
- Some useful formulas:
 Area of a circle with radius \(r \), \(A = \pi r^2 \),
 Circumference of a circle with radius \(r \), \(C = 2\pi r \).
 Area of a rectangle with sides \(x \) and \(y \), \(A = xy \),
 Perimeter of a rectangle with sides \(x, y \), \(P = 2x + 2y \)
 Volume of a rectangular prism with sides \(x, y, z \), \(V = xyz \),
 Surface area of rectangular prism with \(x, y, z \), \(SA = 2xy + 2yz + 2xz \)
 Volume of a cylinder with radius \(r \) and height \(h \), \(V = \pi r^2 h \),
 Surface area of a cylinder with radius \(r \) and height \(h \), \(SA = 2\pi r^2 + 2\pi rh \)

\[
\sum_{i=1}^{n} i = \frac{n(n+1)}{2}
\]
\[
\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}
\]
\[
\sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2} \right)^2
\]
1. (6 points) Sketch a possible graph of a single function f that satisfies all the following conditions:

1. $f'(x) > 0$ on $(-\infty, 1)$, $f'(x) < 0$ on $(1, \infty)$
2. $f''(x) > 0$ on $(-\infty, -2)$ and $(2, \infty)$, $f''(x) < 0$ on $(-2, 2)$
3. $\lim_{x \to -\infty} f(x) = -2, \lim_{x \to \infty} f(x) = 0$

2. (19 points) Find the derivative using the appropriate rules.

 a. (6 pts) $h(x) = (\cos^3(x) + 3\cos(x) + 7)^9 + \frac{\sqrt{x+1}}{x+2} + 2e^{-x^2/2}$

 b. (5 pts) $y = \frac{\sin^4(x)e^{3x}}{(4x^4 - 3x^2 - 2)^5}$ using logarithmic differentiation.

 Use the following table to find the derivatives of the functions at the given values of x.

 \[
 \begin{array}{c|ccc}
 x & 1 & 2 & 4 \\
 \hline
 f(x) & 4 & 2 & 6 \\
 f'(x) & 5 & 7 & 4 \\
 g(x) & 4 & 1 & 6 \\
 g'(x) & 5 & 1 & 3 \\
 \end{array}
 \]

 c. (4 pts) $g(\sqrt{x})f(x)$ at $x = 4$.

 d. (4 pts) $f(g(x) - 2x)$ at $x = 1$.

3. (8 points) Water pours into a fish tank (standard rectangular prism) at a rate of $3 \text{ ft}^3/\text{min}$. How fast is the water level rising if the base of the tank is a rectangle with dimensions $2 \text{ ft} \times 3 \text{ ft}$?
4. **(10 points)** A warehouse consists of three separate spaces of equal size. Assume that the wall materials cost $200 per linear foot and the company has allocated $2,400,000 for the project.

 ![Warehouse Diagram]

 a. **(8 pts)** What dimensions maximize the total area of the warehouse?

 b. **(2 pts)** What is the area of each compartment in this case?

5. **(12 points)** Use L’Hopital’s Rule if applicable. If not, use any other algebraic method learned this semester. You may certainly check your answer with a table.

 a. **(4 pts)** \[
 \lim_{x \to 16} \frac{\sqrt{x} + 4}{x - 16}
 \]

 b. **(4 pts)** \[
 \lim_{x \to 0} \frac{e^x - x - 1}{\cos x - 1}
 \]

 c. **(4 pts)** \[
 \lim_{x \to \infty} x^{1/x}
 \]

6. **(8 points)** Let \(y \) be a function of \(x \). Use implicit differentiation to find the an equation of the tangent line at the point \((1,1)\) on the curve

 \[y^4 + xy = x^3 - x + 2 \]

7. **(7 points)** Determine the antiderivative of \(e^{6t} + \frac{2t^3}{2 + 8t^4} + \frac{2}{2 + 8t^2} \).

8. **(8 points)** Verify the applicability of the IVT in the indicated interval for the give value. IF APPLICABLE find a value of \(c \) guaranteed by the theorem. IF NOT APPLICABLE, explain.

 a. **(4 pts)** \(f(x) = x^2 + x - 1, [-2, 5], f(c) = 11 \)

 b. **(4 pts)** \(f(x) = x^2 + x - 1, [-2, 5], f(c) = 0 \)

9. **(14 points)** Let \(f(x) = 3x^2 - 4x \) on \([0,3]\).

 a. **(2 pts)** Find \(L_3 \).

 b. **(4 pts)** Determine \(\int_0^3 (3x^2 - 4x)dx \) using the FTC.

 c. **(8 pts)** Use infinite Riemann sums to find the area under the curve \(f(x) = 3x^2 - 4x \) on \([0,3]\).
Let F be an antiderivative of f. Consider the following proof that $F(b) - F(a) = \int_a^b f(x)dx$. Fill in the blanks. (***) should be the same entry.

\[
F(b) - F(b) = F(x_n) - F(x_0)
\]

Using telescoping sums, $F(x_n) - F(x_0)$ can be written as

\[
\sum_{i=1}^{n} f(x^*_i) \Delta x
\]

We can write this in summation notation,

\[
(**) \sum_{i=1}^{n} \text{__________________}.
\]

Since $F(x)$ is continuous and bounded on $[a, b]$ and differentiable on (a, b), the MVT guarantees that there exists an x^*_i in $[x_{i-1}, x_i]$ such that

\[
\text{__________________}.
\]

which we can rewrite as

\[
\text{__________________}.
\]

Then by substitution,

\[
(**) \sum_{i=1}^{n} \text{__________________} = \sum_{i=1}^{n} \text{__________________}
\]

Since,

\[
\text{__________________}.
\]

the sum is the same as $\sum_{i=1}^{n} f(x^*_i) \Delta x$.

If we take the limit as n approaches ∞ of both sides, then

\[
F(b) - F(a) = \lim_{n \to \infty} \sum_{i=1}^{n} f(x^*_i) \Delta x = \int_a^b f(x)dx.
\]