1. Let \(A = \begin{bmatrix} 6 & 1 & 0 \\ 12 & 5 & 0 \\ 0 & 0 & 2 \end{bmatrix} \).

1A. Find the characteristic polynomial of \(A \) in factored form. Show all your work.

That polynomial is
\[
\det(A - \lambda I) = \begin{vmatrix} 6-\lambda & 1 & 0 \\ 12 & 5-\lambda & 0 \\ 0 & 0 & 2-\lambda \end{vmatrix} = (2-\lambda) \begin{vmatrix} 6-\lambda & 1 \\ 0 & 2-\lambda \end{vmatrix}
\]

\[
= (2-\lambda)((6-\lambda)(2-\lambda) - 12)
\]

\[
= (2-\lambda)(30 - 11\lambda + \lambda^2 - 12)
\]

\[
= (2-\lambda)(\lambda^2 - 11\lambda + 18)
\]

\[
= (2-\lambda)(\lambda - 9)(\lambda - 2)
\]

or \((-1)(\lambda - 2)(\lambda - 9)\lambda - q\)

1B. Use (1A) to list all the eigenvalues of \(A \) along with their respective multiplicities:

So: \(\lambda = 2 \) with multiplicity 2 and \(\lambda = 9 \) with multiplicity 1.

2. Let \(B = \begin{bmatrix} 6 & -4 & 2 \\ 1 & 2 & 1 \\ 1 & -2 & 5 \end{bmatrix} \). It's a fact (you don't need to show this) that \(\lambda = 4 \) is an eigenvalue of \(B \) of multiplicity 2.

2A. Find a basis of the eigenspace corresponding to \(\lambda = 4 \). Show all your work, starting by explicitly finding \(B - 4I_3 \).

This is the same question as "Find a basis of the null space of \(B - 4I \"

Now, \(B - 4I = \begin{bmatrix} 2 & -4 & 2 \\ 1 & 2 & 1 \\ 1 & -2 & 1 \end{bmatrix} \) has ref \(\begin{bmatrix} 1 & -2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \), so the solutions of \((B - 4I)x = 0 \) are given by

\[
\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_2 \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}
\]

where \(x_2 \) and \(x_3 \) are free. A basis is then: \(\left\{ \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \right\} \)

2B. Find \(Bc \), where \(c = \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix} \). Use a calculator to get \(\begin{bmatrix} 12 \\ 16 \\ 20 \end{bmatrix} \).

2C. Show that \(c = \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix} \) is in the eigenspace of \(\lambda = 4 \) by writing \(c \) as a linear combination of the basis vector(s) you found in (2A). (Give the LC explicitly).

That easy-to-use basis gives

\[
4 \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} + 5 \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 5 \\ 3 \end{bmatrix}
\]

(although you should "verify" the top row? yes, at right: \(4 \cdot 2 + 5 \cdot -1 = 3 \).)

2D. Compute \(Bk \) for \(k = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \). What do you discover from this?

\(Bk \) is \(\begin{bmatrix} 10 \\ 5 \\ 5 \end{bmatrix} \) which is \(5 \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \) showing \(\lambda = 5 \) is another eigenvalue of \(B \).

2E. Using the discovery in (2D) and the fact given at the start of problem (2), find the characteristic polynomial of \(B \) in factored form (no need to multiply it all out).

Since \(\lambda = 4 \) has multi. 2 we know \((\lambda - 4)^2 \) is one factor.

Since the degree of the poly is 3 and \(\lambda = 5 \) is also an eigen vector, \((\lambda - 5) \) must be the other factor

So char poly \(B \) is \((\lambda - 4)^1(\lambda - 5)^{2} \)