For each of the infinite series in #1—5, (a) state your intuition on whether or not it converges conditionally, converges absolutely, or diverges, and (b) prove your assertion with your choice of convergence test(s).

Problem 1. (5 points) \[\sum_{n=0}^{\infty} \frac{79^n}{n!} \]

a. Dominated by factorial behavior. Expect asymptotic ratio = 0 and hence convergence.

b. \[r_n = \frac{a_n}{a_{n-1}} = \frac{\frac{79^n}{n!}}{\frac{79^{n-1}}{(n-1)!}} = \frac{79}{n} \xrightarrow{n \to \infty} 0. \]

Since \(r_n = 0 < 1 \), the ratio test implies this asymptotically geometric series converges (Absolutely, since all terms are already positive.)

Problem 2. (5 points) \[\sum_{n=1}^{\infty} \frac{(-1/2)^n}{\sqrt{n} + 4} \]

a. Dominated by geometric behavior, even after alternation is discarded.

Expect convergence, since the ratios \((\frac{1}{2})\) are < 1.

b. \(\lim |a_n| = \lim \left| \frac{(-1)^n}{2^n \sqrt{n} + 4} \right| = \lim \frac{1}{2^n \sqrt{n+4}} \sim \frac{1}{\infty} = 0 \)

Since \(|a_n| \to 0 \) we know \(a_n \to 0 \) and this converges by the alternating series test!

Moreover, the series \(\sum_{n=1}^{\infty} 2^n \sqrt{n+4} \) has ratios \(R_n = \frac{2^{n-1} \sqrt{n+3}}{2^n \sqrt{n+4}} = \frac{1}{2} \sqrt{\frac{n+3}{n+4}} \xrightarrow{n \to \infty} \frac{1}{2} < 1 \) giving absolute convergence by the ratio test.
Problem 3. (5 points) \(\sum_{n=1}^{\infty} \left(\frac{n}{3n+1} \right)^n \)

(a) Behavior looks like competing factorials. As \(n \to \infty \) this approximately looks like the geometric series \(\sum (\frac{1}{3})^n \) which converges.

(b) Use the root characterization for asymptotic ratios:

\[
R_n = \sqrt[n]{a_n} = \sqrt[n]{\left(\frac{n}{3n+1} \right)^n} = \frac{n}{3n+1} \quad \frac{n \to \infty}{\rightarrow} \quad \frac{1}{3} < 1,
\]

giving absolute convergence by the ratio test.

Problem 4. (5 points) \(\sum_{n=1}^{\infty} \frac{1}{16 + n^2} \)

(a) Were it not for the 16, would look like \(\sum \frac{1}{n^2} \) which converges as a "fast polynomial" series.

(b) The integral test casts this series as a left sum for the integral

\[
\int_{0}^{\infty} \frac{1}{16 + x^2} \, dx.
\]

Since \(\frac{1}{16 + x^2} \) is decreasing on \([0, \infty)\), the integral exceeds its left sum.

But
\[
\int_{0}^{\infty} \frac{1}{16 + x^2} \, dx = \frac{1}{4} \arctan \frac{x}{4} \bigg|_{0}^{\infty} = \frac{\pi}{8},
\]

so in particular the integral is finite.

Thus \(\sum_{n=1}^{\infty} \frac{1}{16n^2} \) converges (to a value no bigger than \(\frac{\pi}{8} \)).

Problem 5. (5 points) \(\frac{2}{2} - \frac{4}{4} + \frac{8}{6} - \frac{16}{8} + \frac{32}{10} - \frac{64}{12} + \cdots \)

\[= \sum_{n=1}^{\infty} \frac{2^n}{2n} = \sum_{n=1}^{\infty} \frac{2^{n-1}}{n} \]

(a) It appears the numerator, being geometric, will set the pace over the polynomial denominator. But the numerator \(\to \infty \), so the terms \(\to \infty \). Diverges.

(b) With \(\ell ^{th} \) partial:

\[
\lim_{n \to \infty} \frac{2^{n-1}}{n} = \lim_{n \to \infty} \frac{(\ln 2)2^{n-1}}{n} = \frac{\infty}{\infty} = \infty
\]

with asymptotic ratios:

\[
r_n = \frac{2^{n-1}/n}{2^n/n} = \frac{2}{2} \, \frac{n-1}{n} \quad \frac{n \to \infty}{\rightarrow} \quad 2 > 1
\]

Diverges by ratio test.