You may use the following facts in answering the questions below.

Suppose \(f(x) \) satisfies \(f(k) = a_k \) for \(k \geq 1 \). Suppose \(f \) is non-negative, decreasing and \(f(x) \to 0 \) as \(x \to \infty \).

Fact ONE: for any integer \(N > 0 \), we have

\[
\sum_{k=N+1}^{\infty} a_k \leq \int_{N}^{\infty} f(x) \, dx.
\]

Fact TWO: One antiderivative of \(\frac{x}{(x^2 + 4)^2} \) is \(-\frac{1}{2(x^2 + 4)} \).

1a. Consider the series \(\sum_{k=1}^{\infty} \frac{k}{(k^2 + 4)^2} \). Use the integral test to explain why this series must converge. Use good notation, especially where limits are involved.

Hint: (this was put on the board during the quiz): You may find it useful to find a general formula for \(\int_{N}^{\infty} \frac{x}{(x^2 + 4)^2} \, dx \)

1b. Suppose the series in (1a) converges to the number \(S \). Find a value of \(N \) for which the partial sum \(\sum_{k=1}^{N} \frac{k}{(k^2 + 4)^2} \) is within \(\epsilon = 0.0001 \) of \(S \). Show all your work.

Hint: (this was put on the board during the quiz): Remember that \(\sum_{k=1}^{\infty} a_k = \sum_{k=1}^{N} a_k + \sum_{k=N+1}^{\infty} a_k \)

1c. For your value of \(N \), use the LHS program to find the partial sum in (1b) to at least 8 places after the decimal point.