Math 205 (Winter 2011)
Test 2 (50 points)

Name: ________________________________

• Check that you have 8 questions on three pages.
• Show all your work to receive full credit for a problem.

1. (5 points) Let A and B be 3×3 matrices, with $\det A = 4$ and $\det A^2B^{-1} = -8$. Use properties of determinants to compute:

(a) $\det 2A$

(b) $\det B$

2. (4 points) Let $H = \text{Span} \{ \vec{v}_1, \vec{v}_2, \ldots, \vec{v}_6 \}$ be a subspace of \mathbb{R}^6. Is the set $\{ \vec{v}_1, \vec{v}_2, \ldots, \vec{v}_6 \}$ a basis for H? Explain.
3. (6 points) Suppose \mathbf{u} is an eigenvector of a 4×4 matrix A corresponding to the eigenvalue -3.

(a) Is $A + 3I$ an invertible matrix? Explain.

(b) Show that \mathbf{u} is an eigenvector of A^3 and find the corresponding eigenvalue.

4. (4 points) Determine if the following set is a subspace of the appropriate space. If the set is a subspace, find a basis and the dimension of the subspace. If the set is not a subspace, provide a counterexample to illustrate that one of the conditions in the definition of subspace does not hold.

$$W = \left\{ \begin{bmatrix} a \\ b \end{bmatrix} \text{ where } a, b \text{ are non-negative real numbers} \right\}.$$
5. (8 points) Let \(\vec{v} = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} \) and let \(\vec{w} = \begin{bmatrix} 3 \\ -1 \\ 0 \end{bmatrix} \).

(a) Compute \(\vec{v} \cdot \vec{w} / \| \vec{v} \| \) \(\vec{v} \) and call it \(\vec{y} \).

(b) Compute \(\vec{w} - \vec{y} \) and call it \(\vec{z} \).

(c) Let \(L = \text{Span}\{\vec{v}\} \). Which of the two vectors \(\vec{y} \) and \(\vec{z} \) is in \(L^\perp \)? Explain.

(d) Find the distance between \(\vec{v} \) and \(\vec{w} \).
6. (9 points) Suppose a 6×6 matrix A has only three distinct eigenvalues, 1, 0 and -1. Suppose
\{\vec{v}_1, \vec{v}_2, \vec{v}_3\} is a basis for the eigenspace corresponding to the eigenvalue 1 and \{\vec{w}_1, \vec{w}_2\} is a
basis for the eigenspace corresponding to the eigenvalue 0.

(a) Is A diagonalizable? Explain.

(b) Let $\vec{b} = 2\vec{v}_1 - 5\vec{v}_2$ be a vector in \mathbb{R}^6. Is \vec{b} an eigenvector of A? Explain. If it is an
eigenvector, find the corresponding eigenvalue.

(c) What is $\text{dim Nul } A$ and $\text{rank } A$? Explain.
7. (7 points) Let \(B = \begin{bmatrix} 1 & 3 & 1 & 2 & -4 \\ 0 & -1 & 5 & -1 & 6 \\ 2 & 5 & 0 & 3 & -9 \\ 0 & 2 & 3 & 2 & 1 \end{bmatrix} \).

(a) Find a basis for \(\text{Col} \ B \) and then state the dimension of \(\text{Col} \ B \).

(b) Let \(\vec{x} = \begin{bmatrix} 2 \\ -1 \\ 3 \\ 2 \end{bmatrix} \). Find the coordinates of \(\vec{x} \) with respect to the basis you found in part (a).
8. (7 points) Let \(C = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 0 \\ 1 & 3 & 1 \end{bmatrix} \).

(a) Find all the eigenvalues of \(C \).

(b) Find a basis for \(\text{Nul} \ C \).