Math 105: Review for Exam II - Solutions

1. Find \(\frac{dy}{dx} \) for each of the following.

 (a) \(y = x^2 + 2x + e^x + e^{2x} + \ln 2 + \ln(2x) + \arctan 2 \)

 \[
 \frac{dy}{dx} = 2x + (\ln 2)2^x + 2e^{2x} + \frac{1}{2x} \cdot 2
 \]

 Note that \(e^x, \ln 2, \) and \(\arctan 2 \) are constants.

 (b) \(y = \sqrt{x} \cdot \arctan(5x) \)

 \[
 \frac{dy}{dx} = \frac{1}{2}x^{-1/2} \arctan(5x) + \sqrt{x} \cdot \frac{1}{1 + (5x)^2} \cdot 5 = \frac{\arctan(5x)}{2x^{1/2}} + \frac{5\sqrt{x}}{1 + 25x^2}
 \]

 (c) \(y = \ln(\tan(2\cos(x^2))) \)

 \[
 \frac{dy}{dx} = \frac{1}{\tan(2\cos(x^2))} \cdot \sec^2(2\cos(x^2)) \cdot \ln(2\cos(x^2)) \cdot (-\sin(x^2)) \cdot 2x
 \]

 (d) \(y = \frac{x + e^x}{\cos 4 + \sin^5(6x)} \)

 Note that \(e^x \) and \(\cos 4 \) are constants.

 \[
 \frac{dy}{dx} = \frac{(1)(\cos 4 + \sin^5(6x)) - (x + e^x)(5\sin^4(6x) \cdot \cos(6x) \cdot 6)}{\cos 4 + \sin^5(6x))^2}

 \text{Recall that } \sin^5(6x) = (\sin(6x))^5.
 \]

2. Consider the curve defined by \(x^3 + y^3 = \frac{9}{2}xy \) (known as the Folium of Descartes).

 (a) Find \(\frac{dy}{dx} \). Use implicit differentiation.

 \[
 3x^2 + 3y^2 \frac{dy}{dx} = \frac{9}{2}y + \frac{9}{2}x \frac{dy}{dx}

 3y^2 \frac{dy}{dx} - \frac{9}{2} \frac{dy}{dx} = \frac{9}{2}y - 3x^2

 \frac{dy}{dx} \left(3y^2 - \frac{9}{2} \right) = \frac{9}{2}y - 3x^2

 \frac{dy}{dx} = \frac{9}{2}y - 3x^2

 \frac{dy}{dx} = \frac{9}{2}y - 3x^2

 \frac{dy}{dx} = 3y^2 - \frac{3}{x^2}
 \]

 (b) Verify that the point \((1,2)\) is on the curve above.

 We must check to see if the values \(x = 1 \) and \(y = 2 \) satisfy the equation above.

 \[
 x^3 + y^3 = \frac{9}{2}xy

 1^3 + 2^3 = \frac{9}{2} \cdot 1 \cdot 2

 9 \neq 9
 \]

 Thus, the point \((1,2)\) is on the curve.

 (c) Find the equation of the tangent line at the point \((1,2)\).

 We want \(y = mx + b \).

 \[
 m = \frac{\frac{9}{2} \cdot 2 - 3 \cdot 1^2}{3 \cdot 2^2 - \frac{3}{2} \cdot 1} = \frac{4}{5}, \text{ so } y = \frac{4}{5}x + b.
 \]

 Now plug in \(x = 1 \) and \(y = 2 \) to find \(b \).

 \[
 2 = \frac{4}{5} \cdot 1 + b \Rightarrow \frac{6}{5} = b
 \]

 Therefore, we have \(y = \frac{4}{5}x + \frac{6}{5} \).
3. Evaluate the following limits.
Throughout this solution, the symbol \star will stand for whatever notation your instructor prefers for using L'Hopital's Rule on the indeterminate form $0/0$; this may be "\text{indeterminate}" or $\frac{0}{0}$ or $\frac{\infty}{\infty}$ or $\frac{0}{\infty}$ or $\frac{\infty}{0}$ or $\frac{\infty}{\infty}$ or "has the form $\frac{0}{0}$" and so, by L'Hopital's Rule, is equal to something else.

The symbol \triangle will serve the same purpose for the indeterminate forms ∞/∞ and $-\infty/\infty$.

(a) \[\lim_{x \to 1} \frac{x^3 - 1}{7 - 7x} \quad \star \quad \lim_{x \to 1} \frac{3x^2}{-7} = \frac{3}{-7} = \frac{3}{7}. \]

(b) \[\lim_{x \to 0} \frac{1 - \cos(2x)}{3^x} = \frac{0}{1} = 0 \quad \text{Can't use (and don't need) L'Hopital's Rule!} \]

(c) \[\lim_{x \to 0} \frac{1 - \cos(4x)}{5x^2} \quad \star \quad \lim_{x \to 0} \frac{4 \sin(4x)}{10x} \quad \star \quad \lim_{x \to 0} \frac{16 \cos(4x)}{10} = \frac{16}{10} = \frac{8}{5} \]

(d) \[\lim_{x \to \infty} \frac{x^2}{2x} \quad \triangledown \quad \lim_{x \to \infty} \frac{2x}{2 \cdot 2x} \quad \triangledown \quad \lim_{x \to \infty} \frac{2}{2 - \ln 2} \cdot 2x = 0 \]

4. Rewrite $\tan(\arccos x)$ as an algebraic expression - no trigonometric or inverse trigonometric functions. [Students in the 8:00 section may omit this problem.]

Let $\theta = \arccos x$. That is, θ is the angle whose cosine is x.

\[\tan(\arccos x) = \tan \theta = \frac{\text{opposite}}{\text{adjacent}} = \frac{\sqrt{1 - x^2}}{x} \]

5. Consider the function $f(x) = x^4e^x$ with domain all real numbers.

(a) Find the x-value(s) of all roots (x-intercepts) of f.
The equation $x^4e^x = 0$ means $x^4 = 0$ (that is, $x = 0$) or $e^x = 0$ (no solution), so the only root is at $x = 0$.

(b) Find the x- and y-value(s) of all critical points and identify each as a local max, local min, or neither.

\[f'(x) = 4x^3e^x + x^4e^x \]
\[0 = x^3e^x(4 + x) \]
\[\Rightarrow x = 0, -4 \quad \text{Note that } e^x \text{ is never } 0. \]

<table>
<thead>
<tr>
<th>x</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x < -4$</td>
<td>positive</td>
</tr>
<tr>
<td>$-4 < x < 0$</td>
<td>negative</td>
</tr>
<tr>
<td>$4 < x$</td>
<td>positive</td>
</tr>
</tbody>
</table>

y-values: $f(-4) = 256e^{-4} \approx 4.689$, $f(0) = 0$
So, f has a local maximum at $(-4, 256e^{-4})$ and a local minimum at $(0, 0)$.

(c) Find the x- and y-value(s) of all global extrema and identify each as a global max or global min.
There is a global minimum at $(0, 0)$. There is no global maximum because as $x \to \infty$, $f(x) \to \infty$.
Note that as $x \to -\infty$, $f(x) \to 0$. You can verify this by using L'Hopital's Rule on x^4/e^{-x}.

(d) Find the \(x \)-value(s) of all inflection points.

\[f''(x) = 12x^2 e^x + 4x^3 e^x + 4x^3 e^x + x^4 e^x \]

Use Product Rule on each product in \(f'(x) \) above.

\[0 = e^x (x^4 + 8x^3 + 12x^2) \]
\[0 = e^x x^2 (x^2 + 8x + 12) \]
\[0 = e^x x^2 (x + 2)(x + 6) \]

\(\Rightarrow x = 0, -2, -6 \)

\[
\begin{array}{c|c|c|c|c}
 x < -6 & -6 < x < -2 & -2 < x < 0 & 0 < x \\
 f'' & \text{positive} & \text{negative} & \text{positive} & \text{positive} \\
 f & \text{concave up} & \text{concave down} & \text{concave up} & \text{concave up}
\end{array}
\]

So, the \(x \)-values of the inflection points of \(f \) are \(x = -2 \) and \(x = -6 \) but NOT \(x = 0 \).

(e) Sketch \(f \).

![Graph of f(x)](image)

6. How would your answers to the previous question change if the domain of \(f \) were \([-10, 10]\)?

There would be a global maximum at \((10, 10^4 e^{10})\). (And the graph would be restricted to \(-10 \leq x \leq 10\)).

7. You are planning to build a box-shaped aquarium with no top and with two square ends. Your budget is $288. If the glass for the sides costs $12 per square foot and the opaque material for the bottom costs $3 per square foot, what dimensions will maximize the volume? Be sure to show how you know you have found the maximum.

![Aquarium diagram](image)

Goal: Maximize volume

Objective function:

\[V = x \cdot x \cdot y = x^2 y \]

We need to get this down to a function of just one variable, so we use the constraint equation:

\[
\begin{align*}
\text{total cost} &= \text{(cost of base)} + \text{(cost of two square ends)} + \text{(cost of two other sides)} \\
288 &= 3xy + 12 \cdot 2x^2 + 12 \cdot 2xy \\
288 &= 27xy + 24x^2 \\
288 - 24x^2 &= 27xy \\
\frac{288 - 24x^2}{27x} &= y
\end{align*}
\]

Substituting this back into the objective function gives
V = x^2y = x^2 \cdot \frac{288 - 24x^2}{27x} = x \cdot \frac{288 - 24x^2}{27} = \frac{1}{27}(288x - 24x^3).

Now that we have V as a function of just one variable, we find its maximum.

\[V'(x) = \frac{1}{27}(288 - 72x^2) \]
\[0 = \frac{1}{27}(288 - 72x^2) \]
\[0 = (288 - 72x^2) \]
\[72x^2 = 288 \]
\[x^2 = \frac{288}{72} \]
\[x = 2 \]

We discard \(x = -2 \) because lengths must be nonnegative.

Since \(V' \) is positive for \(x < 2 \) and negative for \(2 < x \), we know that the maximum occurs at \(x = 2 \).

And \(y = \frac{288 - 24x^2}{27x} = \frac{288 - 24 \cdot 2^2}{27 \cdot 2} = \frac{32}{9} \) so the dimensions are 2 by 2 by \(\frac{32}{9} \).

8. Use the Intermediate Value Theorem to explain why \(f(x) = x^3 - 4x^2 + 5 \) must have a root somewhere on the interval \([1, 2]\).

IVT: If \(f \) is continuous on \([a, b]\) and \(y \) is a number between \(f(a) \) and \(f(b) \), then there is a number \(c \) between \(a \) and \(b \) such that \(f(c) = y \).

Our function \(f \) is continuous on \([1, 2]\). We can compute that \(f(1) = 2 \) and \(f(2) = -3 \). Since 0 is a number between 2 and -3, the IVT says there is a number \(c \) between 1 and 2 such that \(f(c) = 0 \); this \(c \) is the desired root.

[In plainer English, \(f \) is positive at one endpoint and negative at the other. Since \(f \) is continuous, the only way its value can go from positive to negative is to go through zero; where \(f \) is zero is our root.]

9. Let \(y = \frac{x^3 \cos(x)}{x^2 + 1} \).

(a) Find \(\frac{dy}{dx} \) using the product and quotient rules.
\[
\frac{dy}{dx} = \frac{(3x^2 \cos(x) + (-\sin(x))x^3)(x^2 + 1) - 2x(x^3 \cos(x))}{(x^2 + 1)^2}
\]

(b) Find \(\frac{dy}{dx} \) using logarithmic differentiation. [Students in the 1:10 section may consider this as a bonus problem.]

\[
\ln y = \ln \left(\frac{x^3 \cos(x)}{x^2 + 1} \right) \quad \text{Take ln of each side.}
\]
\[
\ln y = 3 \ln x + \ln(\cos(x)) - \ln(x^2 + 1) \quad \text{Apply log rules.}
\]
\[
\frac{1}{y} \frac{dy}{dx} = \frac{1}{x} + \frac{1}{\cos(x)}(-\sin(x)) - \frac{1}{x^2 + 1}(2x) \quad \text{Differentiate each side.}
\]
\[
\frac{dy}{dx} = \left[\frac{3 \sin(x)}{x} - \frac{2x}{\cos(x) \cdot x^2 + 1} \right] \cdot y
\]
\[
\frac{dy}{dx} = \left[\frac{3 \sin(x)}{x} - \frac{2x}{x^2 + 1} \right] \cdot \frac{x^3 \cos(x)}{x^2 + 1}
\]

Do the two methods give the same answer? They should! Check for yourself.