1. (12 pts. each) Evaluate the following integrals.

(a) $$\int x^2 \ln x \, dx$$

(b) $$\int \frac{x^3}{\sqrt{9 - x^2}} \, dx$$
(c) \(\int \sec^4 x \tan^2 x \, dx \)

(d) \(\int \frac{2x + 3}{x(x + 1)^2} \, dx \)
2. (13 pts.) Consider \(\int_0^1 \frac{1}{x^3 + x} \, dx \). Use a comparison to determine if this integral converges or diverges?
3. (15 pts.) Consider the function \(f(x) = \sqrt{1 - x} \).

(a) Find \(P_3(x) \), the 3\(^{rd} \) order Taylor Polynomial, of \(f(x) \) centered at \(x = 0 \). Simplify your answer as much as possible, in other words, fractional coefficients must be in lowest terms.

(b) Use \(P_3(x) \) to find an estimate for \(\sqrt{0.5} \).

(c) Use Taylor’s Theorem to approximate the error of your estimate from part (b) on the interval \([0, \frac{1}{2}]\). Recall that error bounds for estimates using a Taylor Polynomial \(P_n(x) \) may be determined using:

\[
|f(x) - P_n(x)| \leq \frac{K_{n+1}}{(n + 1)!} |x - x_0|^{n+1}.
\]
4. (12 pts. each) Suppose that the time (in hours) it takes to finish this exam is given by the probability density function

\[f(x) = \begin{cases} \frac{k}{x^2} e^{-x^3} & \text{for } x \geq 0 \\ 0 & \text{otherwise} \end{cases} \]

(a) Find the value of \(k \) that ensures \(f \) is a probability density function.

(b) One way to find an “average time” is to compute the median. The median is the number \(N \) such that \(\int_0^N f(x) \, dx = \frac{1}{2} \), i.e., exactly half of the class will finish the test in \(N \) hours or less.

Find \(N \). (Be sure to use your value for \(k \) from part (a) in this integral.)
Useful Formulas

Trigonometric Identities

• $\sin^2 \theta + \cos^2 \theta = 1$

• $\sec^2 \theta = 1 + \tan^2 \theta$

• $\sin(2\theta) = 2 \sin \theta \cos \theta$

• $\cos(2\theta) = \cos^2 \theta - \sin^2 \theta$

• $\sin^2 \theta = \frac{1}{2}(1 - \cos(2\theta))$

• $\cos^2 \theta = \frac{1}{2}(1 + \cos(2\theta))$

Some antiderivative rules:

• $\int \sec \theta \, d\theta = \ln|\sec \theta + \tan \theta| + C$

• $\int \csc \theta \, d\theta = \ln|\csc \theta - \cot \theta| + C$