1. Consider the following vectors in \mathbb{P}_4: Let $\mathbf{v}_1 = 3x^4 + 5x^2 + 6$, $\mathbf{v}_2 = x^4 + 2x^2 + 3$, and $\mathbf{v}_3 = 5x^4 + 7x^2 + 4$. Let \mathbf{b} be the polynomial $49x^4 + 73x^2 + 58$.

1A) In terms of the unknowns α_1, α_2 and α_3, what system of equations do you need to set up to determine if \mathbf{b} can be written as a linear combination $\alpha_1\mathbf{v}_1 + \alpha_2\mathbf{v}_2 + \alpha_3\mathbf{v}_3 = \mathbf{b}$?

1B) Now determine the values of α_1, α_2 and α_3 or explain why there are none. Show any RREF’d matrices you use.

1C) Without setting up any equations or finding any RREF’s, give a quick reason why $\mathbf{c} = 5x^3 + 7x^2 + 11$ is obviously not a linear combination of \mathbf{v}_1, \mathbf{v}_2 and \mathbf{v}_3.

* * * This quiz CONTINUES on the OTHER SIDE * * *
2. Let H be the set of functions in F whose graphs are completely above the horizontal line $y = 2$.

2A. Is $v_1 = x^2 + 4$ in H? You can draw a graph of v_1 (copy it here) to explain your answer.

2B. Is $v_2 = 2 + \sin x$ in H? You can draw a graph of v_2 (copy it here) to explain your answer.

2C. Explain informally why H is closed under the vector addition of F (hint: think about “addition of y-coordinates”) or give an explicit counter example.

2D. Explain informally why H is closed under scalar multiplication (hint: think about “multiplying y-coordinates by any arbitrary scalar”) or give an explicit counter example that shows H is not closed under scalar multiplication.