(10) I. Define any two of these terms. Use a complete, mathematically correct sentence for each definition.

- cycle
- the alternating group on n letters
- left coset of a subgroup of a group $\langle G, * \rangle$

A.

B.

(4) II. Complete the following statement of Lagrange’s Theorem:

If G is a finite group and H is a subgroup of G, then ...

__

__
(16) III. Give examples of:

A. A homomorphism from \mathbb{Z}_3 to \mathbb{Z}_6 whose kernel is $\{0\}$.

B. A non-trivial homomorphism from \mathbb{Z}_8 to \mathbb{Z}_6

C. A non-abelian group with 12 elements.

D. A cyclic group that is isomorphic to the direct product of two of its non-trivial subgroups.
(21) IV. Fill in the blanks:

A. One generator for \(Z_8 \times Z_9 \) is _______________________.

B. The order of \((1, 2, 3)(2, 3, 4)\) in \(S_4 \) is _______________________.

D. The number of left cosets of \(\langle 5 \rangle \) in \(Z_{10} \) is ____________________.

E. The order of the group \(S_6 \) is ____________________.

G. Express \((1, 4, 2, 5, 3, 7) \in S_7\) as a product of transpositions __________________.

H. The order of the factor group \((Z_{11} \times Z_6)/\langle 1, 3 \rangle \) is ____________________.

I. The subgroup of \((Z_4 \times Z_8)/\langle 0, 2 \rangle \) generated by \((3, 3) + \langle 0, 2 \rangle \) has ______________________ elements.

(9) V. If \(\langle G, * \rangle \) is an abelian group with identity \(e \), define \(H = \{ x \in G \mid x * x = e \} \).
If \(G = Z_2 \times Z_4 \), what is \(H \)?
VI. Suppose \(\phi : G \to G' \) is a homomorphism and that \(\ker (\phi) = \{e\} \). Let \(x, y \in G \) and suppose \(\phi(x) = \phi(y) \). Prove that \(x = y \). You may use all the other results we have proven for homomorphisms, such as \(\phi(e) = e' \), \((\phi(y))^{-1} = \phi(y^{-1}) \), etc. [Hint: Consider \(\phi(xy^{-1}) \).]

VII. If \(H \) is a subgroup of \(G \), \(a \) an element of \(G \), and \(aH = Ha \), prove that if \(h \) is an arbitrary element of \(H \), then \(aha^{-1} \) is an element of \(H \).
(10) VIII. Draw a regular pentagon and label its vertices with the integers 1, 2, 3, 4, and 5. The symmetries of the pentagon form a group of order 10, sometimes denoted D_5 and called the 5th dihedral group. Use cycle notation to express each of these symmetries as a permutation of the vertices of the pentagon.
IX. TRUE OR FALSE? (Don't guess! The number of incorrect responses will be subtracted from the number of correct ones.)

_____ 1. $\mathbb{Z}_5 \times \mathbb{Z}_{25}$ is a cyclic group.

_____ 2. The number of elements in any subgroup of a finite group G divides the number of elements in G.

_____ 3. Every permutation is a cycle.

_____ 4. The direct product of abelian groups is always abelian.

_____ 5. S_6 has no cyclic subgroups.

_____ 6. The composition of two permutations of a set A is always a permutation of A.

_____ 7. Every left coset of a subgroup of a group G is also a subgroup of G.

_____ 8. Every abelian group of order 8 contains a cyclic subgroup of order 8.

_____ 9. Every cycle is a permutation

_____ 10. Every finite group of prime order is cyclic