1. Suppose \(\det(A) = 600 \) where \(A = \begin{bmatrix} 5 & y & 2 & 4 \\ 0 & 0 & w & 0 \\ 0 & 10 & 9 & 7 \\ 0 & 0 & 6 & 3 \end{bmatrix} \).

1A. Find \(A_{2,3} \).
1B. Find \(\det(A_{2,3}) \).

1C. Find \(w \) (notice there are a lot of zeros in its row).

1D. Does finding \(\det(A) \) by expansion across either the first row or down the second column tell you what \(y \) is? Explain.

1E. **Bonus:** Find \(y \).

2. Let \(B = \begin{bmatrix} a & b & c \\ 5 & 6 & 7 \\ m & n & p \end{bmatrix} \); suppose \(\det(B) = 3 \)

Find the determinant of each of the following matrices, and under each matrix write the reason/rule/fact about determinants of matrices you used to find the det. (eg, “swapping rows changes the sign of the det” or “the determinant of the derivative of a matrix is the matrix of its integral” (this second fact is nonsense)

2A. \(\begin{bmatrix} a + 20 & b + 24 & c + 28 \\ 5 & 6 & 7 \\ m & n & p \end{bmatrix} \) the det is:
2B. \(\begin{bmatrix} a & 5 & m \\ b & 6 & n \\ c & 7 & p \end{bmatrix} \) the det is:

2C. \(\begin{bmatrix} a & b & c \\ 20 & 24 & 28 \\ m & n & p \end{bmatrix} \) the det is:
2D. \(\begin{bmatrix} a & b & c \\ 5 & 6 & 7 \\ a & b & c \end{bmatrix} \) the det is:

2E. \(4B \) the det is:
2F. \(B^{-1} \)

Hint for 2F: You know \(BB^{-1} = I_3 \), so both sides of this equation must have the same determinant. But you know two out of three of the determinants involved.

3. Suppose \(U = \begin{bmatrix} 4 & 6 & 2 \\ 0 & 3 & 7 \\ 0 & 0 & 5 \end{bmatrix} \). Suppose \(C \) is row equivalent to \(U \) and the elementary row operations which produce \(U \) from \(C \) are:

a) one row swap.
b) a multiple of one row is added to another and *this is done 3 times*.
c) one row operation involves dividing a row by 4
d) one row operation involves multiplying a row by 5.

3A. What is the determinant of \(C \)?

3B. Explain why you do NOT need to know the exact order in which these row operations are performed in order to find \(\det(C) \).