1.) (10 pts.) The graphs below are $f$, $f'$, and $f''$. State which is which, and explain how you know this.
2.) (15 pts.)

a.) (5 pts.) Suppose \( \lim_{x \to 5^-} f(x) = 2 \) and \( \lim_{x \to 5^+} f(x) = 4 \). Is it possible that \( \lim_{x \to 5} f(x) = 3 \)? Justify your answer.

b.) (5 pts.) Suppose \( g(x) = \frac{x^2 + 3x - 10}{x - 2} \). What is \( g(2) \)? [Note: \( g(x) \) is not related to \( f(x) \) in part (a).]

c.) (5 pts.) What is \( \lim_{x \to 2} \frac{x^2 + 3x - 10}{x - 2} ? \)
3.) (15 pts.)

a.) (5 pts.) Give an example of a polynomial, and describe in words what it means for a function to be a polynomial.

b.) (5 pts.) Give an example of a rational function, and describe in words what it means for a function to be a rational function.

c.) (5 pts.) Give an example of an exponential function, and describe in words what it means for a function to be an exponential function.
4.) (15 pts.) Shown below is a graph of $f'$ on its entire domain. The graph is NOT $f$.

a.) (3 pts.) At which $x$-value(s) does $f$ have a stationary point?

b.) (3 pts.) At which $x$-value(s) does $f'$ have a stationary point?

c.) (3 pts.) At which $x$-value(s) is $f$ greatest?

d.) (3 pts.) At which $x$-value(s) is $f$ increasing?

e.) (3 pts.) At which $x$-value(s) is $f$ concave up?
5.) (15 pts.) For each of the following questions, let \( f(x) = \sqrt{x} + \frac{1}{x^3} \). On this page, you may complete the exercises using the Power Rule we learned for computing derivatives and antiderivatives.

a.) (5 pts.) Compute the general antiderivative \( F(x) \).

b.) (5 pts.) Solve the initial value problem in which the differential equation is \( f(x) \) and the initial condition is \( F(1) = 3 \).

c.) (5 pts.) Compute \( f'(x) \).
6.) (15 pts.) Consider the function \( f(x) = \ln(8x) \).

a.) (5 pts.) Draw \( f(x) \), showing the graph for \( x \)-values ranging from 0 to 5.

b.) (5 pts.) Numerically zoom to estimate \( f'(2) \).

c.) (5 pts.) Explain, referring to your graph, how the idea of numerical zooming leads us to the exact definition of the derivative at a point (such as at the point \( x = 2 \)).
7.) (15 pts.) Use the limit definition of the derivative to compute \( f'(x) \) for \( f(x) = 3x^2 + 5x \). [NOTE: you may use the Power Rule to check your result, but that alone will earn you no credit.]