Let G be a group and let $a \in G$ be a fixed element. Define $\rho_a : G \to G$ by the rule $\rho_a(g) = ga$ for all $g \in G$, i.e. ρ_a multiplies what goes into it on the right by a.

Define $K = \{ \rho_a : a \in G \}$ to be the set of all these ρ's.

A. Let $x \in G$ be arbitrary. One element of G that ρ_a sends to x is ____________.

B. Part A proves that ρ_a is ____________________________.

C. Let $x, y \in G$ and $\rho_a(x) = \rho_a(y)$. Prove that $x = y$.

__

__

D. Part C proves that ρ_a is ____________________________.

E. A function from G to G that has the properties from parts B and D is called

a ____________________________ of G.

[the answer starts with P]

F. If ρ_a is composed with ρ_b then the function $\rho_a \circ \rho_b$ is an element of K, i.e. equals ρ_c for some $c \in G$. The c that gives $\rho_a \circ \rho_b$ is ________________.

G. Show that if e is the identity element of G, then ρ_e is the identity permutation of G.

__

H. The answer to part E assures us that ρ_a has an inverse for every $a \in G$, i.e. is of the form ρ_c. The c that gives the inverse for ρ_a is ________________.

I. We call a set with an operation that satisfies F, G, and H a ____________________________.