YOUR GRADE IS BASED ON CORRECTNESS, COMPLETENESS, AND CLARITY ON EACH EXERCISE. EXPLAIN ALL ANSWERS COMPLETELY. YOU MAY USE A CALCULATOR, BUT NO NOTES, BOOKS, OR OTHER STUDENTS. GOOD LUCK!

1.) (10 pts.) Check whether \(y = \ln x + x^2 + e^x \) solves the differential equation \(y'' + xy' = 3 \).

\[
y' = \frac{1}{x} + 2x + e^x
\]
\[
y'' = -\frac{1}{x^2} + 2 + e^x
\]

Check:

\[
\left(-\frac{1}{x^2} + 2 + e^x \right) + x \left(\frac{1}{x} + 2x + e^x \right) = 3
\]

\[-\frac{1}{x^2} + 2 + e^x + 1 + 2x^2 + xe^x \neq 3
\]

\[-\frac{1}{x^2} + e^x + 2x^2 + xe^x \neq 3 \text{ NO!}
\]

So: not a solution.
2.) (15 pts.) Suppose that \(g(x) = f(x) + 3 \) and that \(f'(x) \) exists for all \(x \).

a.) Explain how the graphs of \(f \) and \(g \) are related.

The graph of \(g \) looks like the graph of \(f \), but is shifted up 3 units.

b.) How is the graph of \(g' \) related to the graph of \(f'' \)? Explain.

\[
g'(x) = f'(x) \quad \text{These are identical.}
\]

(This makes sense because \(g \) is a vertical shift of \(f \), but the slopes at any \(x \)-value are the same.)

c.) If \(f'(1) = 5 \), what is \(g'(1) \)?

\[
g'(1) = f'(1) \quad \text{(based on part (i))}
\]

so \(g'(1) = 5 \).
3. (15 pts.) Use the limit definition of the derivative to compute \(f'(x) \) if \(f(x) = -3x^2 + 5x \). Be sure to write out all appropriate notation at each step. (Note: using the Power Rule only earns you no credit on this problem, though it is OK to use the Power Rule to check your answer.)

\[
\begin{align*}
 f'(x) &= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \\
 &= \lim_{h \to 0} \frac{-3(x+h)^2 + 5(x+h) - (-3x^2 + 5x)}{h} \\
 &= \lim_{h \to 0} \frac{-3x^2 - 6xh - 3h^2 + 5x + 5h + 3x^2 - 5x}{h} \\
 &= \lim_{h \to 0} \frac{h(-6x - 3h + 5)}{h} \\
 &= \lim_{h \to 0} (-6x - 3h + 5) \\
 &= -6x + 5
\end{align*}
\]
4.) (15 pts.) The graph below shows the function f. Use it to answer the questions about an antiderivative function F, and about f.

![Graph of function $f(x)$]

a.) At which x-value(s) does F have a local minimum?

Where: F' (which is f) has a zero and is moving from negative to positive:

$x \approx 0.7, 6.4$

b.) On which interval(s) is F increasing?

Where f is positive:

$(0.7, 2.9) \cup (6.4, 8.8)$

c.) On which interval(s) is F concave down?

Where f is decreasing:

$(1.8, 3.9) \cup (5, 5.6) \cup (7.7, 10)$

d.) At which x-value(s) does F have an inflection point?

Where f changes from increasing to decreasing, or decreasing to increasing:

$x \approx 1.8, 3.9, 5, 5.6, 7.7$

e.) On which interval(s) is f decreasing?

$(1.8, 3.9) \cup (5, 5.6) \cup (7.7, 10)$
5.) (15 pts.) The graph below shows the function f. Use it to answer the questions below.

![Graph of f(x)](image)

a.) Use the grid to estimate the values of $f'(1)$, $f'(5)$, and $f''(8)$.

- $f'(1) \approx 3$
- $f'(5) \approx 0$
- $f''(8) \approx \frac{-3}{2}$

b.) On which interval(s) is $f'' > 0$?

Where f is concave up:

$$(3, 4.5) \cup (5.2, 6.7)$$

c.) Using the axes below, sketch a graph of f'.
6.) (15 pts.) For each of the following graphs, answer the questions below and justify your responses.

1.) Is this the graph of a function?
 Yes: there is just one output for each input.

2.) Does the graph have even symmetry, odd symmetry, or neither?
 Even: mirror image about y-axis.

1.) Is this the graph of a function?
 No: vertical line test (above) shows two outputs for a single input.

2.) Does the graph have even symmetry, odd symmetry, or neither?
 Neither: it is not a mirror image about the y-axis (even) nor can we rotate 180° about the origin and have the same shape (odd).
7.) (15 pts.) Use the graph of $f(x)$ below to answer the questions about limits.

![Graph of f(x)](image)

a.) What is $\lim_{x \to 2} f(x)$? 0

b.) What is $\lim_{x \to 2} f'(x)$? \text{DNE}

c.) What is $\lim_{x \to 0^+} f(x)$? 4

d.) What is $\lim_{x \to 0} f(x)$? \text{DNE}

e.) What is $\lim_{x \to 6^-} f(x)$? 0

BONUS: Write a poem about Calculus. You may use the back of this page or attach a page you have brought with you. (If you are attaching a page, please make sure your name is on it.)