February 5, 2010 Mathematics 206 Mr. Haines
Mathematics 206 Multi variable Calculus
Examination #1

(15) I. If $\mathbf{a} = \mathbf{i} + \mathbf{j}$ and $\mathbf{b} = \mathbf{i} - 2\mathbf{j}$, compute these:

A. $\mathbf{a} \cdot \mathbf{b} =$

B. $\|\mathbf{b}\| =$

C. $\text{comp}_\mathbf{b}\mathbf{a} =$

D. $\text{proj}_\mathbf{b}\mathbf{a} =$
(5) II. Give an equation of the plane containing the points (1, 2, 3) and (3, 6, 7) and with normal \(2i - j\).

(10) III. Give examples of the following sets in \(\mathbb{R}^2\)

A. A set that is open and bounded.

B. A set that is open and not bounded.
(10) IV. \(A(t) = \left(1 + t, t^2, \frac{1}{t} \right) \) with \(t \geq 1 \) is a path in \(\mathbb{R}^3 \).

A. Calculate \(A'(t) \), the derivative of \(A(t) \).

B. Give an equation of the tangent line to this path at the point where \(t = 1 \).

(5) V. Identify in words the surface whose equation is \(x^2 - y^2 - z^2 - 1 = 0 \).
VI. Suppose \(\mathbf{a} \) is a vector with tail at the point \((1,2,3)\) and head at the point \((3,5,5)\). Give a unit vector that is perpendicular to \(\mathbf{a} \).

VII. Compute the area of the parallelogram in \(\mathbb{R}^2 \) with vertices \((1,1)\), \((5,7)\), \((4,5)\), and \((2,3)\).
(5) VIII. The plane P has coordinate equation $2x + 3y + z = 5$.

Give an equation for any line lying in P:

(10) IX. Give examples of:

A. Two unit vectors in \mathbb{R}^3 that are perpendicular.

B. Equations of two distinct parallel planes.
(15) X. If \(f(x, y) = x \sin y \)

A. \(\frac{\partial f}{\partial x} (x, y) = \)

B. \(\frac{\partial f}{\partial y} (x, y) = \)

C. \(\frac{\partial^2 f}{\partial y \partial x} (x, y) = \)

D. \(\frac{\partial^2 f}{\partial x \partial y} (x, y) = \)
XI. For the quadratic form

\[p(x,y,z) = -x^2 - 2y^2 - 5z^2 - 2xz \, , \]

A. Give a symmetric matrix \(S \) that is the matrix of this quadratic form.

B. By taking determinants and using Sylvester’s Theorem, determine if \(p \) is positive definite, negative definite, indefinite, or none of these.

XII. A student says that any three points in \(\mathbb{R}^3 \) determine a plane. She wants to find the equation of the plane that contains the points \((1, 1, 3), (1, 0, 4), \) and \((1, -1, 5) \). She knows she needs to find a normal to the plane, but has trouble computing it. Why?