1. Let \(A = \begin{bmatrix} 2 & -4 & 1 & 8 \\ 5 & -10 & -1 & 13 \\ -3 & 6 & 1 & -7 \end{bmatrix} \).
 1A) Let \(u = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \). Use the “super-augmented” matrix technique developed in class to find any/all conditions on \(u_1 \), \(u_2 \), and \(u_3 \) that guarantee the matrix equation \(Ax = u \) is consistent. Show both the super-augmented matrix you use and its RREF.

 Consider \(\begin{bmatrix} 2 & -4 & 1 & 8 \\ 5 & -10 & -1 & 13 \\ -3 & 6 & 1 & -7 \end{bmatrix} \)

 Its RREF is \(\begin{bmatrix} 1 & -2 & 0 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \)

 The last row requires
 \[
 0 = u_1 - \frac{3}{2} u_2 - \frac{3}{2} u_3 \quad \text{or} \quad u_1 = \frac{3}{2} u_2 + \frac{3}{2} u_3
 \]

 in order for \(Ax = \hat{u} \) to be consistent.

1B) Show that the vector \(v = \begin{bmatrix} 1 \\ -8 \\ 6 \end{bmatrix} \) satisfies the condition(s) you found in (1A).

 \[\begin{align*}
 1 &= \frac{5}{2}(8) + \frac{7}{2}(6) \\
 &= 5(4) + 7(3) \\
 &= -20 + 21 \\
 \end{align*} \]

1C) Find all the solutions of \(Ax = v \) and express them in parametric vector form.

 \[
 \begin{bmatrix}
 A & | & v \\
 \end{bmatrix} = \begin{bmatrix}
 2 & -4 & 1 & 8 \\
 5 & -10 & -1 & 13 \\
 -3 & 6 & 1 & -7 \\
 \end{bmatrix} \begin{bmatrix}
 1 \\
 -8 \\
 6 \\
 \end{bmatrix}
 \]

 has RREF \(\begin{bmatrix} 1 & -2 & 0 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \) which tells us the solution \(x \)

1D) What specific solution \(s = \begin{bmatrix} s_1 \\ s_2 \\ s_3 \\ s_4 \end{bmatrix} \) do you get for \(Ax = v \) if you set all the free variables in (1C) to 10?

 \[
 \begin{bmatrix}
 s_1 \\
 s_2 \\
 s_3 \\
 s_4 \\
 \end{bmatrix} = \begin{bmatrix}
 -1 + 20 + 30 \\
 10 \\
 -20 \\
 10 \\
 \end{bmatrix}
 \]

1E) Find \(As \) (do this product using your calculator and two of its matrices as shown in class) for the vector \(s \) in (1D). What do you get for \(As \)?

 Since \(s \) is a solution of \(A\hat{x} = \hat{v} \), we get \(A\hat{s} = \begin{bmatrix} -8 \\ 6 \end{bmatrix} \) (no need to use a calculator unless you'd like to verify this!)