1. Find a value for \(n \) that guarantees that \(L_n \) will approximate the value of the integral within \(\pm 0.005 \).

 \[
 \int_{0}^{2} \sin(x^2) \, dx
 \]

2. Find the area of the region bounded by the curves \(y = \sin(x) \) and \(y = \cos(x) \) in the interval \([0, 2\pi] \).

3. **Set-up**, but do NOT evaluate, an integral that would find the length of the curve \(y = f(x) = x^{\frac{5}{3}} \) from \(x = 0 \) to \(x = 8 \).
4. Sketch the region in the first quadrant bounded by the curves \(y = \sqrt{x} \), \(y = 0 \), and \(x=4 \). **Set-up**, but do NOT evaluate, an integral that would find the volume in each of the following cases.

 a) the region were rotated around the x-axis.

 b) the region were rotated around the y-axis.

 c) the region were rotated around \(x = 4 \).

Bonus: Evaluate the integral in #3.