Math 106: Review for Exam I

1. Find the following. [Substitution tip: usually let \(u \) = a function that’s “inside” another function, especially if \(du \) (possibly off by a multiplying constant) is also present in the integrand.]

(a) \(\int_{1}^{4} \frac{e^{\sqrt{x}}}{\sqrt{x}} \, dx \)

(b) \(\int_{\pi}^{2\pi} \cos^7(5x) \sin(5x) \, dx \)

(c) \(\int \frac{7x^2}{1 + x^6} \, dx \)

(d) \(\int_{6}^{10} x \sqrt{10 - x} \, dx \)
2. Suppose \(f(x) \) is decreasing and concave up.

 (a) Put the following quantities in ascending order.

 \[L_{100}, R_{100}, T_{100}, M_{100}, \int_{a}^{b} f(x) \, dx \]

 (b) What can you say with certainty about where \(S_{200} \) would fit into your list above?

3. Suppose \(f(t) \) is the rate of change (in animals per month) of a population \(P(t) \).

 (a) What does \(\int_{4}^{12} f(t) \, dt \) represent in this problem?

 (b) Find the best possible left, right, midpoint, trapezoidal, and Simpson's approximations to \(\int_{4}^{12} f(t) \, dt \) given the data in the table below.

 \[
 \begin{array}{|c|c|c|c|c|c|}
 \hline
 t & 4 & 6 & 8 & 10 & 12 \\
 \hline
 f(t) & 15 & 11 & 8 & 4 & 3 \\
 \hline
 \end{array}
 \]

4. Find bounds for each of the following errors if \(I = \int_{2}^{7} \ln x \, dx \).

 (a) \(|I - L_{100}| \)

 (b) \(|I - T_{100}| \)

 (c) \(|I - M_{100}| \)
5. If \(I = \int_{2}^{7} \ln x \, dx \), how many subdivisions are required to obtain a trapezoidal sum approximation with error of at most \(1/1,000,000 \)?

6. Solve the differential equation \(\frac{dy}{dx} = 2xy + 6x \) if the solution passes through \((0,5)\). [Students in the 9:30 section should omit this problem.]

7. Write integrals equal to

 (a) the arc length of \(y = x^2 \) on the interval \([1, 5]\)

 (b) the area bounded by \(y = x^2 - 8x + 24 \) and \(y = 3x \)
8. Consider the region bounded by $y = \sqrt{x}$, $y = 0$, and $x = 9$. Write an integral equal to the volume generated if this region is revolved about

(a) the x-axis

(b) the line $x = -1$