Let A be the region in the first quadrant bounded by the curves $y = \sqrt{1 - x^2}, y = \sqrt{1 - \frac{x}{4}}$ and the line $y = 0$.

(a) Set up (do not evaluate) a definite integral representing the area of the region A. [Hint: Sketch the region A first.]

Using horizontal slices, the length of a typical slice (in green) is the difference between the x-coordinates of the right and the left endpoints, i.e., $4(1 - y^2) - \sqrt{1 - y^2}$. It follows that the area of the region A is given by

$$\int_0^1 4(1 - y^2) - \sqrt{1 - y^2} \, dy.$$

(b) Find the exact volume of the solid formed by rotating the region A about the y-axis.

(Date: January 27, 2014.)
Using horizontal slices again, a typical slice of this solid is a “washer”. It follows that the volume of the solid is given by

\[V = \int_0^1 \left[\pi (4(1-y^2))^2 - \pi (\sqrt{1-y^2})^2 \right] dy \]

\[= \pi \int_0^1 16(1-2y^2+y^4) - (1-y^2) \, dy \]

\[= \pi \left. \left(15 - 31y^2 + 16y^4 \right) \right|_0^1 = \pi \left(15 - \frac{31}{3} + 16 \right) = \frac{118\pi}{15}. \]