Let F be the set of all real-valued functions with domain \mathbb{R} and let \tilde{F} be the subset of F consisting of those functions that have a non-zero value at every point in \mathbb{R}.

A. \tilde{F} is not a subgroup of F under function addition. Why?

B. \tilde{F} is a subgroup of F under function multiplication.

 i. Explain why \tilde{F} is closed under function multiplication.

 ii. Explain why the multiplicative identity of F is also in \tilde{F}.

 iii. If $f \in \tilde{F}$ then the multiplicative inverse of f is also in \tilde{F}. Explain how to construct this multiplicative inverse and why it is in \tilde{F}.