NAME:

Show ALL your work CAREFULLY.

(a) Use the method of substitution to evaluate the following definite integral. Be sure to indicate the substitution you use.

\[\int_0^{\pi/2} \frac{\cos x}{1 + \sin x} \, dx. \]

Let \(u = 1 + \sin x \). It follows that \(du = \cos x \, dx \). When \(x = 0, u = 1 \) and when \(x = \pi/2, u = 2 \). Now our definite integral becomes

\[\int_0^{\pi/2} \frac{\cos x}{1 + \sin x} \, dx = \int_1^2 \frac{du}{u} = \ln |u| \bigg|_1^2 = \ln 2 - \ln 1 = \ln 2. \]

(b) The graph of the function \(f \) is given below. Consider the area function \(F(x) = \int_0^x f(t) \, dt \). For what values of \(x \) on the interval \([0, 2]\) is \(F \) concave down?

The function \(F \) is concave down when the second derivative \(F'' \) is negative. By the Fundamental Theorem of Calculus, \(F'(x) = f(x) \) so that \(F''(x) = f'(x) \). Since \(f'(x) < 0 \) when \(f \) is decreasing, \(F \) is concave down when \(f \) is decreasing. Over the interval \([0, 2]\), \(f \) is decreasing for \(1 < x \leq 2 \) (approximately).

Date: January 12, 2007.