Math 105 - Quiz 1 - January 11, 2008

Instructions: Show all of your work and circle your final answers. Calculators are allowed, but notes and books are not.

1. (10 pts.) Use the method of u-substitution with \(u = \sin x \) to evaluate the indefinite integral \(\int e^{\sin x} \cos x \, dx \).

 If \(u = \sin x \), then \(\frac{du}{dx} = \cos x \), so \(du = \cos x \, dx \).

 Then \(\int e^{\sin x} \cos x \, dx = \int e^u \, du = e^u + C = \left[e^{\sin x} + C \right] \)

2. (10 pts.) Evaluate the indefinite integral \(\int x^3(x^4 - 1)^5 \, dx \).

 Let \(u = x^4 - 1 \), so \(\frac{du}{dx} = 4x^3 \), so \(du = 4x^3 \, dx \).

 Then \(\frac{du}{4} = x^3 \, dx \), so

 \[
 \int x^3(x^4 - 1)^5 \, dx = \int u^5 \frac{du}{4} = \frac{1}{4} \int u^5 \, du
 \]

 \[
 = \frac{1}{4} \left(\frac{u^6}{6} + C \right) = \frac{u^6}{24} + C = \frac{(x^4 - 1)^6}{24} + C
 \]