NAME:

Show ALL your work CAREFULLY.

(a) Use the method of substitution to find the following indefinite integral. Be sure to indicate the substitution you use.

\[\int \frac{\ln x}{x} \, dx \]

Let \(u = \ln x \) so that \(du = \frac{1}{x} \, dx \). It follows that

\[\int \frac{\ln x}{x} \, dx = \int u \, du = \frac{u^2}{2} + C = \frac{(\ln x)^2}{2} + C. \]

(b) Use the method of substitution to evaluate the following definite integral. Be sure to indicate the substitution you use.

\[\int_{0}^{\sqrt{\pi/2}} x \sin(x^2) \, dx \]

Let \(u = x^2 \) so that \(du = 2x \, dx \) or \(x \, dx = \frac{du}{2} \). Moreover, when \(x = 0 \), \(u = 0 \) and when \(x = \sqrt{\pi/2}, u = \pi/2 \). It follows that

\[\int_{0}^{\sqrt{\pi/2}} x \sin(x^2) \, dx = \int_{0}^{\pi/2} \sin u \, \frac{du}{2} = \frac{1}{2} \left(-\cos \frac{\pi}{2} \right) - \left(-\cos 0 \right) = \frac{1}{2} + 1 = \frac{3}{2}. \]

Date: January 10, 2014.